Application and Pharmacological Properties of Chinese Herb Danggui: A System Review

A B S T R A C T

History of the usage of Angelica sinensis (Danggui in Chinese) is glorious, it often acts as monarch drug compatible in various classical formulations. Angelica sinensis can be widely used in treatment of gynecologic diseases and all kinds of blood-deficiency fever by tonifying blood and repairing vitality. It contains abundant volatile oil, organic acid and Angelica sinensis polysaccharide, coumarin, trace elements and amino acids, which possesses extensive pharmacological activities include resistant to cancer and tumour, regulation of blood system, hepatoprotective effects, anti-inflammatory action, antioxidant activity, protection of nervous system, as well as cardioprotective effects. Based on numerous reports and the published scientific literature recent years, an extensive review of research on chemical components, pharmacological activities and the compatibility application of Angelica sinensis were conducted. The relationship between active ingredients and the corresponding pharmacological effects, as well as commonly used couplet medicines and the utility in clinic were simultaneously summarized.

Keywords

Angelica sinensis (Oliv.) Diels, chemical components, pharmacological activities, targets, clinical application



Get access to the full version of this article.

Article Info

Article Type
Review Article
Publication history
Received: Wed 19, Feb 2020
Accepted: Mon 02, Mar 2020
Published: Mon 23, Mar 2020
Copyright
© 2023 Xi-jun Wang. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Hosting by Science Repository.
DOI: 10.31487/j.AJMC.2020.01.03

Author Info

Corresponding Author
Xi-jun Wang
National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plant, Nanning Guangxi, China

Figures & Tables



Get access to the full version of this article.

References

  1. The Compile Commission of Zhonghua Bencao of the State Administration of Traditional Chinese Medicine of the People’s Republic of China. Zhonghua Bencao [M]. Vol. 5. Shanghai: Science and Technology Press 1999: 893-894.
  2. Pharmaceutical botany[M] (2016) Peking: China Traditional Medicine Press 10.
  3. Chinese botany editorial committee (1992). Flora of China[M]. Peking: Science Press 55: 41.
  4. Zhong LJ, Hua YL, Ji P, Yao WL, Zhang WQ et al. (2016) Evaluation of the anti-inflammatory effects of volatile oils from processed products of Angelica sinensis radix by GC-MS-based metabolomics. J Ethnopharmacol 191: 195-205. [Crossref]
  5. Zhang WQ, Hua YL, Zhang M, Ji P, Li JX et al. (2015) Metabonomic analysis of the anti-inflammatory effects of volatile oils of Angelica sinensis on rat model of acute inflammation. Biomed Chromatogr 29: 902-910. [Crossref]
  6. Sowndhararajan K, Deepa P, Kim M, Park SJ, Kim S (2017) A Review of the Composition of the Essential Oils and Biological Activities of Angelica Species. Sci Pharm 85. [Crossref]
  7. Liao KF, Chiu TL, Huang SY, Hsieh TF, Chang SF et al. (2018) Anti-Cancer Effects of Radix Angelica Sinensis (Danggui) and N-Butylidenephthalide on Gastric Cancer: Implications for REDD1 Activation and mTOR Inhibition. Cell Physiol Biochem 48: 2231-2246. [Crossref]
  8. Hua YL, Ma Q, Zhang XS, Yao WL, Ji P et al. (2019) Urinary metabolomics analysis reveals the effect of volatile oil from Angelica sinensis on LPS-induced inflammation rats. Biomed Chromatogr 33: e4402. [Crossref]
  9. Li J, Hua Y, Ji P, Yao W, Zhao H et al. (2016) Effects of volatile oils of Angelica sinensis on an acute inflammation rat model. Pharm Biol 54: 1881-1890. [Crossref]
  10. Qiuyue S,Yingbo FU, Jiang Liu et al. (2011) HanLi Chemical constituents from Angelica sinensis. Chinese Herbal Medicines 42: 1900-1904.
  11. Zou J, Chen GD, Zhao H, Huang Y, Luo X et al. (2018) Triligustilides A and B: Two Pairs of Phthalide Trimers from Angelica sinensis with a Complex Polycyclic Skeleton and Their Activities. Org Lett 20: 884-887. [Crossref]
  12. Lu GH, Chan K, Chan CL, Leung K, Jiang ZH et al (2004) Quantification of ligustilides in the roots of Angelica sinensis and related umbelliferous medicinal plants by high-performance liquid chromatography and liquid chromatography-mass spectrometry. J Chromatogr A 1046: 101-107. [Crossref]
  13. Chen D, Du Z, Lin Z, Su P, Huang H et al. (2018) The Chemical Compositions of Angelica pubescens Oil and Its Prevention of UV-B Radiation-Induced Cutaneous Photoaging. Chem Biodivers 15: e1800235. [Crossref]
  14. Gui Q, Zheng J (2019) Simultaneous determination of eight components in Angelica sinensis based on UHPLC-ESI-MS/MS method for quality evaluation. Biomed Chromatogr 33: e4326. [Crossref]
  15. Zhang LB, Lv LJ, Liu JW (2016) Phthalide Derivatives with Anticoagulation Activities from Angelica sinensis. J Nat Prod 79: 1857-1861. [Crossref]
  16. Wang K, Wu J, Xu J, Gu S, Li Q et al. (2018) Correction of Anemia in Chronic Kidney Disease With Angelica sinensis Polysaccharide via Restoring EPO Production and Improving Iron Availability. Front Pharmacol 9: 803. [Crossref]
  17. Wang J, Ge B, Li Z, Guan F, Li F (2016) Structural analysis and immunoregulation activity comparison of five polysaccharides from Angelica sinensis. Carbohydr Polym 140: 6-12. [Crossref]
  18. Zhang Y, Zhou T, Wang H, Cui Z, Cheng F et al. (2016) Structural characterization and in vitro antitumor activity of an acidic polysaccharide from Angelica sinensis (Oliv.) Diels. Carbohydr Polym 147: 401-408. [Crossref]
  19. Younas F, Aslam B, Muhammad F, Mohsin M, Raza A et al. (2017) Haematopoietic effects of Angelica sinensis root cap polysaccharides against lisinopril-induced anaemia in albino rats. Pharm Biol 55: 108-113. [Crossref]
  20. Tian S, Hao C, Xu G, Yang J, Sun R (2017) Optimization conditions for extracting polysaccharide from Angelica sinensis and its antioxidant activities. J Food Drug Anal 25: 766- 775. [Crossref]
  21. Wang J, Ge B, Li Z, Guan F, Li F (2016) Structural analysis and immunoregulationactivity comparison of five polysaccharides from Angelica sinensis. Carbohyd Polym 140: 6-12. [Crossref]
  22. Wang K, Song Z, Wang H, Li Q, Cui Z et al. (2016) Angelica sinensis polysaccharide attenuates concanavalin A-induced liver injury in mice. Int Immunopharmacol 31: 140-148. [Crossref]
  23. Zhang Y, Zhou T, Wang H, Cui Z, Cheng F et al. (2016) Structural characterization and in vitro antitumor activity of an acidic Polysaccharid from Angelica sinensis (Oliv.) Diels. Carbohydr Polym 147: 401-408. [Crossref]
  24. Renxiu Peng, Jiang le, Weiqun Tian (2004) Isolation, purification and partial properties of polysaccharides from Angelica sinensis. West China Journal of Pharmaceutical Sciences 6: 412-414.
  25. Chen XP, Li W, Xiao XF, Zhang LL, Liu CX (2013) Phytochemical and pharmacological studies on Radix Angelica sinensis. Chin J Nat Med 11: 577-587. [Crossref]
  26. Jin M, Zhao K, Huang Q Xu C, Shang P (2012) Isolation, structure and bioactivities of the polysaccharides from Angelica sinensis (Oliv.) Diels: a review. Carbohydr Polym 89: 713-722. [Crossref]
  27. Lu GH, Chan K, Leung K, Chan CL, Zhao ZZ et al. (2005) Assay of free ferulic acid and total ferulic acid for quality assessment of Angelica sinensis. J Chromatogr A 1068: 209-219. [Crossref]
  28. Gong AG, Huang VY, Wang HY, Lin HQ, Dong TT et al. (2016) Ferulic Acid Orchestrates Anti-Oxidative Properties of Danggui Buxue Tang, an Ancient Herbal Decoction: Elucidation by Chemical Knock-Out Approach. PLoS One 11: e0165486. [Crossref]
  29. Ma Y, Chen K, Lv L, Wu S, Guo Z (2019) Ferulic acid ameliorates nonalcoholic fatty liver disease and modulates the gut microbiota composition in high-fat diet fed ApoE-/- mice. Biomed Pharmacother 113: 108753. [Crossref]
  30. Park HJ, Cho JH, Hong SH, Kim DH, Jung HY et al. (2018) Whitening and anti-wrinkle activities of ferulic acid isolated from Tetragonia tetragonioides in B16F10 melanoma and CCD-986sk fibroblast cells. J Nat Med 72: 127-135. [Crossref]
  31. Yin ZN, Wu WJ, Sun CZ, Liu HF, Chen WB et al. (2019) Antioxidant and Anti-inflammatory Capacity of Ferulic Acid Released from Wheat Bran by Solid-state Fermentation of Aspergillus niger. Biomed Environ Sci 32: 11-21. [Crossref]
  32. Zhou SS, Xu J, Tsang CK, Yip KM, Yeung WP et al. (2018) Comprehensive quality evaluation and comparison of Angelica sinensis radix and Angelica acutiloba radix by integrated metabolomics and glycomics. J Food Drug Anal 26: 1122-1137. [Crossref]
  33. Ma JP, Guo ZB, Jin L, Li YD (2015) Phytochemical progress made in investigations of Angelica sinensis (Oliv.) Diels. Chin J Nat Med 13: 241-249. [Crossref]
  34. Chen XP, Li W, Xiao XF, Zhang LL, Liu CX (2013) Phytochemical and pharmacological studies on Radix Angelica sinensis. Chin J Nat Med 11: 577-587. [Crossref]
  35. Wei WL, Zeng R, Gu CM, Qu Y, Huang LF (2016) Angelica sinensis in China-A review of botanical profile, ethnopharmacology, phytochemistry and chemical analysis. J Ethnopharmacol 190: 116-141. [Crossref]
  36. Reddy CS, Kim SC, Hur M, Kim YB, Park CG et al. (2017) Natural Korean Medicine Dang-Gui: Biosynthesis, Effective Extraction and Formulations of Major Active Pyranocoumarins, Their Molecular Action Mechanism in Cancer, and Other Biological Activities. Molecules 22. [Crossref]
  37. Di Zhou, Yuhua Zhang, Zhe Jiang (2017) Biotransformation of isofraxetin-6-O-b- D -glucopyranoside by Angelica sinensis (Oliv.) Diels callus. Bioorg Medl Chem Letters 27: 248-253.
  38. Bartnik M, A Slawinska Brych A, Zurek A, Kandefer Szerszeń M , Zdzisińska B (2017) 8-methoxypsoralen reduces AKT phosphorylation,induces intrinsic and extrinsic apoptotic pathways, and suppresses cell growth of SK-N-AS neuroblastoma and SW620 metastatic colon cancer cells. J Ethnopharmacol 207: 19-29. [Crossref]
  39. Franklin C, Cesko E, Hillen U, Schilling B, Brandau S (2017) Modulation and apoptosis of neutrophil granulocytes by extracorporeal photopheresis in the treatment of chronic graft-versus-host disease. PLoS One 10: e0134518. [Crossref]
  40. Hugang Jiang, Xinke Zhao, Wenyan Lin (2019) Qualitative Analysis of Multiple Cumarins in Angelicae Sinensis Radix Based on HPLC-Q-TOF-MS/MS. Chin J Exper Trad Med Form 1-10.
  41. Zhiyuan Cao, Jianhui Fang, Wei Lu (2011) Determination of Trace Elements for Angelica Sinensis by ICP-OES with Microwave Digestion. Stud Trace Elements Health 28: 18-20.
  42. Wang YP, Fang Y, Gu ZR, Wang YL (2016) [Research on the Correlation Between Soil Mineral Elements and NIR Fingerprint of Angelica sinensis]. Zhong Yao Cai 39: 1201-1206. [Crossref]
  43. Zhaolin Zhang, Zhi Liu, Xiaowen Cai (1983) Determination of trace metal elements in Angelica sinensis. Chin Trad Herb Drugs 14: 15-16.
  44. Zhu S, Guo S, Duan JA, Quin D, Yan H et al. (2017) UHPLC-TQ-MS Coupled with Multivariate Statistical Analysis to Characterize Nucleosides, Nucleobases and Amino Acids in Angelicae Sinensis Radix Obtained by Different Drying Methods. Molecules 22: E918. [Crossref]
  45. Qu C, Yan H, Zhu SQ, Qian YY, Zhou GS et al. (2019) Comparative analysis of nucleosides, nucleobases, and amino acids in different parts of Angelicae Sinensis Radix by ultra high performance liquid chromatography coupled to triple quadrupole tandem mass spectrometry. J Sep Sci 1122-1132. [Crossref]
  46. Anfossi G, Russo I, Massucco P, Mattiello L, Cavalot F et al. (2002) Adenosine increases human platelet levels of cGMP through nitric oxide: possible role in its antiaggregating effect. Thromb Res 105: 71-78. [Crossref]
  47. Yingxia Liu (2006) Study on chenical components of danggui Blood-supplementing Decoction. Nanchang University 5: 3.
  48. Zhongshan Jia, Tianying Guan, Guojun Cao (1992) Content analysis of trace elements and amino acids in Angelica sinensis. Biotic Resources 1992: 49.
  49. Lin YJ, Liang WM, Chen CJ, Tsang H, Chiou JS et al. (2019) Network analysis and mechanisms of action of Chinese herb-related natural compounds in lung cancer cells. Phytomedicine 58:152893. [Crossref]
  50. Chen MC, Hsu WL, Chang WL, Chou TC (2017) Antiangiogenic activity of phthalides-enriched Angelica Sinensis extract by suppressing WSB-1/pVHL/HIF-1α/VEGF signaling in bladder cancer. Sci Rep 7: 5376. [Crossref]
  51. Liao KF, Chiu TL, Huang SY, Hsieh TF, Chang SF et al. (2018) Anti-Cancer Effects of Radix Angelica Sinensis (Danggui) and N-Butylidenephthalide on Gastric Cancer: Implications for REDD1 Activation and mTOR Inhibition. Cell Physiol Biochem 48: 2231-2246. [Crossref]
  52. Chiu SC, Chiu TL, Huang SY, Chang SF, Chen SP et al. (2017) Potential therapeutic effects of N-butylidenephthalide from Radix AngelicaSinensis (Danggui) in human bladder cancer cells. BMC Complement Altern Med 17: 523. [Crossref]
  53. Su YJ, Huang SY, Ni YH, Liao KF, Chiu SC (2018) Anti-Tumor and Radiosensitization Effects of N-Butylidenephthalide on Human Breast Cancer Cells. Molecules 23: E240. [Crossref]
  54. Pang CY, Chiu SC, Harn HJ, Zhai WJ, Lin SZ et al. (2013) Proteomic-based identification of multiple pathway underlying n-butylidenephthalide-induced apoptosis in LNCaP human prostate cancer cells. Food Chem Toxicol 59: 281-288. [Crossref]
  55. Qi H, Jiang Z, Wang C, Yang Y, Li L et al. (2017) Sensitization of tamoxifen-resistant breast cancer cells by Z-ligustilide through inhibiting autophagy and accumulating DNA damages. Oncotarget 8: 29300-29317. [Crossref]
  56. Ren F, Li J, Wang Y, Wang Y, Feng S et al. (2018) The Effects of Angelica Sinensis Polysaccharide on Tumor Growth and Iron Metabolism by Regulating Hepcidin in Tumor-Bearing Mice. Cell Physiol Biochem 47: 1084-1094. [Crossref]
  57. Zhang WF, Yang Y, Li X, Xu DY, Yan YL et al. (2017) Angelica polysaccharides inhibit the growth and promote the apoptosis of U251 glioma cells in vitro and in vivo. Phytomedicine 33: 21-27. [Crossref]
  58. Gong W, Zhu S, Chen C, Yin Q, Li X et al. (2019) The Anti-depression Effect of Angelicae Sinensis Radix Is Related to the Pharmacological Activity of Modulating the Hematological Anomalies. Front Pharmacol 10: 192. [Crossref]
  59. Chang CW, Chen YM, Hsu YJ, Huang CC, Wu YT et al. (2016) Protective effects of the roots of Angelica sinensis on strenuous exercise-induced sports anemia in rats. J Ethnopharmacol 193: 169-178. [Crossref]
  60. Younas F, Aslam B, Muhammad F, Mohsin M, Raza A et al. (2017) Haematopoietic effects of Angelica sinensis root cap polysaccharides against lisinopril-induced anaemia in albino rats. Pharm Biol 55: 108-113. [Crossref]
  61. Wang K, Wu J, Cheng F, Huang X, Zeng F et al. (2017) Acidic Polysaccharide from Angelica sinensis Reverses Anemia of Chronic Disease Involving the Suppression of Inflammatory Hepcidin and NF-κB Activation. Oxid Med Cell Longev 2017: 7601592. [Crossref]
  62. Liu JY, Zhang Y, You RX, Zeng F, Guo D et al. (2012) Polysaccharide isolated from Angelica sinensis inhibits hepcidin expression in rats with iron deficiency anemia. J Med Food 15: 923-929. [Crossref]
  63. Wang L, Jiang R, Song SD, Hua ZS, Wang JW et al. (2015) Angelica sinensis polysaccharide induces erythroid differentiation of human chronic myelogenous leukemia k562 cells. Asian Pac J Cancer Prev 16: 3715-37121. [Crossref]
  64. Liu W, Li W, Sui Y, Li XQ, Liu C et al. (2019) Structure characterization and anti-leukemia activity of a novel polysaccharide from Angelica sinensis (Oliv.) Diels. Int J Biol Macromol 121: 161-172. [Crossref]
  65. Xu CY, Geng S, Liu J, Zhu JH, Zhang XP et al. (2014) Experimental study on aging effect of Angelica sinensis polysaccharides combined with cytarabine on human leukemia KG1alpha cell lines. Zhongguo Zhong Yao Za Zhi 39: 1260-1264. [Crossref]
  66. Liu J, Xu CY, Cai SZ , Zhou Y, Li J et al. (2014) Senescence effects of Angelica sinensis polysaccharides on human acute myelogenous leukemia stem and progenitor cells. Asian Pac J Cancer Prev 14: 6549-6556. [Crossref]
  67. DeLeve LD (2015) Liver sinusoidal endothelial cells in hepatic fibrosis. Hepatology 61: 1740-1746. [Crossref]
  68. Zhi Min Zhao, Hong Liang Liu, Xin Sun et al. (2017) Levistilide A inhibits angiogenesis in liver fibrosis via vascular endothelial growth factor signaling pathway. Experimental Biology and Medicine 242: 974-985. [Crossref]
  69. Cao P, Sun J, Sullivan MA, Huang X, Wang H et al. (2018) Angelica sinensis polysaccharide protects against acetaminophen-induced acute liver injury and cell death by suppressing oxidative stress and hepatic apoptosis in vivo and in vitro. Int J Biol Macromol 111: 1133-1139. [Crossref]
  70. Wang K, Song Z, Wang H, Li Q, Cui Z et al. (2016) Angelica sinensis polysaccharide attenuates concanavalin A-induced liver injury in mice. Int Immunopharmacol 31: 140-148. [Crossref]
  71. Li J, Hua Y, Ji P, Yao W, Zhao H et al. (2016) Effects of volatile oils of Angelica sinensis on an acute inflammation rat model. Pharm Biol 54: 1881-1890. [Crossref]
  72. Hua YL, Ma Q, Zhang XS, Yao WL, Ji P et al. (2019) Urinary metabolomics analysis reveals the effect of volatile oil from Angelica sinensis on LPS-induced inflammation rats. Biomed Chromatogr 33: e4402. [Crossref]
  73. Choi ES, Yoon JJ, Han BH, Jeong DH, Lee YJ et al. (2018) Ligustilide attenuates vascular inflammation and activates Nrf2/HO-1 induction and, NO synthesis in HUVECs. Phytomedicine 38: 12-23. [Crossref]
  74. Lu X, Wo G, Li B, Xu C, Wu J et al. (2018) The anti-inflammatory NHE-06 restores antitumor immunity by targeting NF-κB/IL-6/STAT3 signaling in hepatocellular carcinoma. Biomed Pharmacother 102: 420-427. [Crossref]
  75. Kim YJ, Lee JY, Kim HJ, Kim DH, Lee TH et al. (2018) Anti-Inflammatory Effects of Angelica sinensis (Oliv.) Diels Water Extract on RAW 264.7 Induced with Lipopolysaccharide. Nutrients 10: E647. [Crossref]
  76. Xie Y, Zhang H, Zhang Y, Wang C, Duan D et al. (2018) Chinese Angelica Polysaccharide (CAP) Alleviates LPS-Induced Inflammation and Apoptosis by Down-Regulating COX-1 in PC12 Cells. Cell Physiol Biochem 49: 1380-1388. [Crossref]
  77. Chowdhury S, Ghosh S, Das AK, Sil PC et al. (2019) Ferulic Acid Protects Hyperglycemia-Induced Kidney Damage by Regulating Oxidative Insult, Inflammation and Autophagy. Front Pharmacol 10: 27. [Crossref]
  78. Aswar U, Mahajan U, Kandhare A, Aswar M (2019) Ferulic acid ameliorates doxorubicin-induced cardiac toxicity in rats. Naunyn Schmiedebergs Arch Pharmacol 392: 659-668. [Crossref]
  79. Zhuang C, Wang Y, Zhang Y, Xu N (2018) Oxidative stress in osteoarthritis and antioxidant effect of polysaccharide from angelica sinensis. Int J Biol Macromol 115: 281-286. [Crossref]
  80. Tian S, Hao C, Xu G, Yang J, Sun R (2017) Optimization conditions for extracting polysaccharide from Angelica sinensis and its antioxidant activities. J Food Drug Anal 25: 766-775. [Crossref]
  81. Niu X, Zhang J, Ling C, Bai M, Peng Y et al. (2018) Polysaccharide from Angelica sinensis protects H9c2 cells against oxidative injury and endoplasmic reticulum stress by activating the ATF6 pathway. J Int Med Res 46: 1717-1733. [Crossref]
  82. Wang Y, Li Y, Li S, Li Q, Fan W et al. (2019) Extracellular polysaccharides of endophytic fungus Alternaria tenuissima F1 from Angelica sinensis: Production conditions, purification, and antioxidant properties. Int J Biol Macromol 133: 172-183. [Crossref]
  83. Mu X, Zhang Y, Li J, Xia J, Chen X et al. (2017) Angelica Sinensis Polysaccharide Prevents Hematopoietic Stem Cells Senescence in D-Galactose-Induced Aging Mouse Model. Stem Cells Int 2017: 3508907. [Crossref]
  84. Gong W, Zhou Y, Li X, Gao X, Tian J et al. (2016) Neuroprotective and Cytotoxic Phthalides from Angelicae Sinensis Radix. Molecules 21: E549. [Crossref]
  85. Feng Z, Lu Y, Wu X, Zhao P, Li J et al. (2012) Ligustilide alleviates brain damage and improves cognitive function in rats of chronic cerebral hypoperfusion. J Ethnopharmacol 144: 313-321. [Crossref]
  86. Zhang Q, Chen ZW, Zhao YH, Liu BW, Liu NW et al. (2017) Bone Marrow Stromal Cells Combined With Sodium Ferulate and n-Butylidenephthalide Promote the Effect of Therapeutic Angiogenesis via Advancing Astrocyte-Derived Trophic Factors After Ischemic Stroke. Cell Transplant 26: 229-242. [Crossref]
  87. Niu X, Zhang J, Ni J, Wang R, Zhang W et al. (2018) Network pharmacology-based identification of major component of Angelica sinensis and its action mechanism for the treatment of acute myocardial infarction. Biosci Rep 38: BSR20180519. [Crossref]
  88. Pan H, Zhu L (2018) Angelica sinensis polysaccharide protects rat cardiomyocytes H9c2 from hypoxia-induced injury by down-regulation of microRNA-22. Biomed Pharmacother 106: 225-231. [Crossref]
  89. Ai hua Zhang, Hui Sun, Xi jun Wang (2018) Chinmedomics: A Powerful Approach Integrating Metabolomics with Serum Pharmacochemistry to Evaluate the Efficacy of Traditional Chinese Medicine Engineering 11: 008.
  90. Ren JL, Zhang AH, Wang XJ (2018) Advances in mass spectrometry-based metabolomics for investigation of metabolites. RSC Adv 8: 22335.
  91. Chan PH, Zhang WL, Lau CH, Cheung CY, Keun HC et al. (2014) Metabonomic analysis of water extracts from different angelica roots by ¹H-nuclear magnetic resonance spectroscopy. Molecules 19: 3460-3470. [Crossref]
  92. Zhong LJ, Hua YL, Ji P, Yao WL, Zhang WQ et al. (2016) Evaluation of the anti-inflammatory effects of volatile oils from processed products of Angelica sinensis radix by GC-MS-based metabolomics. J Ethnopharmacol 191: 195-205. [Crossref]
  93. Yanyan Wu, Lu Wang, Guangxue Liu (2014) Characterization of principal compositions in the roots of Angelica sinensis by HPLC-ESI-MSn and chemical comparison of its different parts. J Chin Pharm Sci 23: 393-402.
  94. Li S, Zhang B (2013) Traditional Chinese medicine network pharmacology: theory, methodology and application. Chin J Nat Med 11: 110-120. [Crossref]
  95. Hui Sun, Hong lian Zhang, Ai hua Zhang (2018) Network pharmacology combined with functionalmetabolomics discover bile acid metabolism asa promising target for mirabilite against colorectal cancer. RSC Adv 8: 30061-30070.
  96. Wang XJ, Zhang AH, Sun H (2016) Chinmedomics: Newer theory andapplication. Chinese Herbal Medicines 8: 299-307.
  97. Yue Han, Ai Hua Zhang, Xi jun Wang (2018) Chemical metabolomics for investigating the protective effffectiveness of Acanthopanax senticosus Harms leaf against acute promyelocytic leukemia. RSC Adv 8: 11983-11990.
  98. Shen D, Tang S, Lu P (2014) An Analysis of Prescription Rules of Formulas Contained Danggui in Chinese Prescription Preparations Based on Association Rules Algorithm. J Trad Chin Med 55: 608-611.
  99. Jin Y, Qu C, Tang Y, Pang H1, Liu L at al. (2016) Herb pairs containing Angelicae Sinensis Radix (Danggui): A review of bio-active constituents and compatibility effects. J Ethnopharmacol 181: 158-171. [Crossref]
  100. Yin JB, Zhou KC, Wu HH, Hu W, Ding T et al. (2016) Analgesic Effects of Danggui-Shaoyao-San on Various “Phenotypes” of Nociception and Inflammation in a Formalin Pain Model. Mol Neurobiol 53: 6835-6848. [Crossref]
  101.  (Han) Zhang Zhongjing; Yu Zhixian, Zhang Zhiji collated Synopsis of Golden Chamber [M]. Beijing: Traditional Chinese Medicine Ancient Books Press. 1997: 55.
  102.  Mei Shi (2017) Pharmacology and Clinical Application Analysis of Angelica Paeoniae Powder. Smart Healthcare 3: 17-18.
  103.  Wang YL, Ru SY, Fang Q, Li GQ, Pan YF et al. (2015) [Mechanism Study on Danggui Shaoyao San and Guizhi Fuling Wan For Treating Primary Dysmenorrheal Based on Biological Network]. Zhong Yao Cai 38: 2348-2352. [Crossref]
  104.  Zheng KY, Choi RC, Guo AJ, Bi CW, Zhu KY et al. (2012) The membrane permeability of Astragali Radix-derived formononetin and calycosin is increased by Angelicae Sinensis Radix in Caco-2 cells: a synergistic action of an ancient herbal decoction Danggui Buxue Tang. J Pharm Biomed Anal 70: 671-679. [Crossref]
  105.  Ji Li (2011) Formulaology. Beijing: Higher Education Press. 2011: 85.
  106.  Yang Li, Junjie Hao (2018) Network Pharmacology-based Study on Mechanism of DangGuiBuXue Decoction in Treating Anemia. J Dali University 3: 1-6.
  107.  Lin HQ, Gong AG, Wang HY, Duan R, Dong TT et al. (2017) Danggui Buxue Tang (Astragali Radix and Angelicae Sinensis Radix) for menopausal symptoms: A review. J Ethnopharmacol 199: 205-210. [Crossref]
  108.  Xiumei Liu, ShuweiZhang, Yan Li (2019) Study on the mechanism of action of Ligusticum chuanxiong in treating cardiovascular diseases from a system pharmacology perspective. Liaon J Trad Chin Med 4: 1-8.
  109.  Li WX, Zhang H, Tang JF, Meng XL, Liu P et al. (2016) [Clinical application characteristics of Danggui-Chuanxiong herb pair in Chinese medicines on basis of real-world]. Zhongguo Zhong Yao Za Zhi 41: 1338-1341. [Crossref]