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A B S T R A C T 

 

This study assessed automated quantification of CD44, c-MET, MTOR, EGFR, and GLUT1 protein 

expression in a tissue microarray of 109 Stage II-IV p16 positive and negative head and neck squamous cell 

carcinomas (HNSCC) treated with definitive chemoradiation. Immunohistochemistry-based protein 

expression was quantified in an automated manner using digitally scanned images processed with Definiens 

Tissue Studio software to generate a histologic score (H-score, range 0-300) which was normalized for each 

biomarker. Biomarker expression levels were correlated with one another and with p16 status. Effects of 

biomarker and p16 status on locoregional control, disease-free survival, and overall survival were analyzed 

using Kaplan Meier and Cox proportional hazard modelling. There was a significant negative correlation 

between CD44 and p16 expression and significant positive correlations between CD44 and MTOR, CD44 

and GLUT1, c-MET and MTOR, and MTOR and GLUT1. When patients were stratified by p16 status, the 

significant positive correlation between CD44 expression and MTOR remained for both the p16 positive 

and negative subsets, while correlations between CD44 and GLUT1 and c-MET and MTOR were seen in 

the p16 negative subset only. A significant correlation between MTOR and GLUT was seen overall and for 

the p16 positive subset. When the effects of biomarker expression on clinical endpoints were examined, 

histologic scores below the defined cut-points for CD44 and c-MET were each associated with improved 

locoregional control. Higher expressions of CD44, c-MET, EGFR, and GLUT1 were associated with 

inferior disease-free and overall survival. On multivariable analysis, p16 positivity remained independently 

associated with improved locoregional control, disease-free survival, and overall survival, high CD44 

remained independently associated with inferior locoregional control, disease-free survival, and overall 

survival, and EGFR with inferior disease-free and overall survival. In conclusion, the use of an automated 

system to quantify IHC expression allowed objective correlation between biomarkers and stratification of 

patients, revealing that higher expressions of CD44, c-MET, EGFR, and GLUT1 were associated with 

poorer disease-free and overall survival. 
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Introduction 

 

Tissue microarrays (TMAs) can interrogate protein expression levels 

across many samples simultaneously and are therefore powerful tools to 

discover biomarkers with potential predictive or prognostic utility. 

Compared to the conventional immunohistochemistry (IHC) using 

individual tissue sections, TMAs facilitate high-throughput IHC analysis 

through their ability to combine many samples in a single slide, 

improving efficiency and eliminating possible variability in processing 

[1, 2]. Though they are subject to limitations, including loss of areas of 

heterogeneity from larger tissue blocks and the potential for variations 

in fixation and processing, their ability to facilitate high throughput 

makes them ideal for screening large numbers of specimens. 

 

However, the ability to efficiently query multiple samples is still limited 

by quantification. Manual quantification through visual inspection is 

labor-intensive and also prone to issues with reproducibility due to its 

inherent subjectivity, limitations which are reduced or eliminated with 

automated analysis [1]. Therefore, efforts to establish a method for 

automated quantification have been the subject of multiple studies [3-5]. 

Several commercial platforms for automated analysis have also been 

developed [6]. While there are minor variations in these methods and 

commercial platforms, in general, they have the common benefits of 

improved efficiency and improved inter-experimental normalization.  

 

The prognostic utility of biomarkers has played a major role in recent 

changes to staging and treatment in head and neck cancer (HNSCC). The 

prognostic value of HPV status in oropharyngeal cancer has led to 

multiple trials investigating the possibility of therapy de-escalation in 

this setting [7, 8]. Improved understanding of the prognostic value of 

additional biomarkers in this disease site may lead to further 

improvements in treatments and clinical outcomes. 

 

Among previous research making use of automated quantification of 

biomarker expression levels in TMAs, there is limited literature on the 

validation of this technique using biomarkers with known clinical 

prognostic significance as defined by traditional, manual scoring of 

biomarker expression levels. Therefore, we analyzed the expression of 

several biomarkers in a TMA constructed from tissue samples from 

HNSCC patients treated with chemoradiation. We performed automated 

quantification of biomarkers as we had previously assessed these 

biomarkers for clinical prognostic significance using semi-quantitative 

visual inspection [9-11].  

 

Materials and Methods 

 

I Patient Selection and Generation of TMA 

 

After approval from the Institutional Review Board, a tissue microarray 

was generated using tissue from pre-treatment biopsies of stage II-IV 

HNSCC patients as previously described [9]. Briefly, the representative 

areas of invasive carcinoma were marked by a pathologist, and two 1.0-

mm tumor tissue samples were taken from each block and inserted onto 

the TMA. All patients had archived tissue available at our institution and 

were treated with chemoradiation from 2003 through 2011. A total of 

109 patients were included. 

 

Table 1: Baseline characteristics of the patient population. 

Parameter Classification Number % 

Age <50 17 15.6% 

50-59 32 29.4% 

60-69 33 30.3% 

70+ 27 24.8% 

Race African American 10 9.2% 

Caucasian 99 90.8% 

Sex Female 19 17.4% 

Male 90 82.6% 

Tobacco use 

>10 pack years 

Yes 69 63.3% 

No 40 36.7% 

Primary 

Tumor 

Oral Cavity 4 3.7% 

Oropharynx 68 62.4% 

Hypopharynx 7 6.4% 

Larynx 30 27.5% 

T-Stage T1 16 14.7% 

T2 48 44.0% 

T3 27 24.8% 

T4 2 1.8% 

T4a 12 11.0% 

T4b 4 3.7% 

N-Stage N0 18 16.5% 

N1 15 13.8% 

N2a 13 11.9% 

N2b 38 34.9% 

N2c 17 15.6% 

N3 8 7.3% 

Clinical Stage II 6 5.5% 

III 22 20.2% 

IVA 70 64.2% 

IVB 11 10.1% 
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The patient characteristics are described in (Table 1). Chemotherapy was 

given at the discretion of the treating medical oncologist, and concurrent 

chemotherapy consisted of cisplatin (n=71), carboplatin (n=13), or 

cetuximab (n=25). Eighteen percent (n=19) received neoadjuvant 

chemotherapy consisting of docetaxel, cisplatin, and 5-fluorouracil. All 

patients received intensity-modulated radiation therapy with a 

simultaneous integrated boost technique with the dose prescribed to two 

planning target volumes. A dose of 70 Gy at 2 Gy per fraction was 

typically prescribed to the planning target volume (PTV1) encompassing 

the gross tumor volume, and 59.85 Gy at 1.71 Gy per fraction was 

prescribed to the planning target volume (PTV2) encompassing the 

uninvolved clinical target volume. 

 

II Immunohistochemistry 

 

IHC staining was performed on primary tumors by a horseradish 

peroxidase technique using either a DAKO Autostainer (DAKO, 

Hamburg, Germany) or Ventana Discovery XT (Ventana Inc., Tucson, 

AZ, USA) according to the manufacturer’s recommendation. Paraffin-

embedded tissues mounted on slides were pre-treated for 30 min with an 

epitope target retrieval solution (DAKO). Slides were then subjected to 

an automatic staining procedure with standardized peroxidase blocking 

reagent. The following antibodies and concentrations were used: CD44 

clone EPR1013Y (Abcam, Cambridge, MA, USA) diluted 1:50 and 

incubated at 42°C for 1 h; c-MET clone 8F11 (Vector Laboratories Inc., 

Burlingame, CA, USA) diluted 1:100 and incubated at 42°C for 2 h; a 

rabbit monoclonal (Y391) antibody against the C-terminal of human 

MTOR, used at a dilution of 1:400 after antigen retrieval with high pH 

conditions; EGFR clone 3C6 (Ventana Inc.) prediluted and incubated at 

42°C for 30 min; GLUT1 (Abcam, Cambridge, MA, USA) diluted 1:300 

and incubated at 42°C for 1 h; and HK2 clone Ab37593 (Abcam, 

Cambridge, MA, USA) diluted 1:20 and incubated at 42°C for 1 h. All 

antibodies were then visualized with 3,-3’-diaminobenzidine (DAB) 

chromogen, and hematoxylin was used for counterstaining. 

 

III Quantification of IHC protein expression 

 

High-resolution digital images were created by scanning slides for each 

biomarker using an Aperio Scan-Scope AT Turbo (Leica, Buffalo 

Grove, Illinois) at ×20 magnification and organized using Image Scope 

eSlide Manager (Leica) and TMA images were imported into Definiens 

Tissue Studio software (Definiens Inc., Cambridge, MA). Definiens uses 

a proprietary de-arraying algorithm consisting of three phases: TMA 

core segmentation, gridding, and mapping, which overcomes processing 

and sectioning artifacts and identifies and isolates each core. Within each 

core, a software algorithm was trained to automatically detect regions of 

interest (ROI), which were defined as viable tumor, non-tumor, white 

space, and artifacts (histological deposits, tissue folds etc.). Within the 

viable tumor ROI of each core, individual nuclei were detected based on 

hematoxylin staining. Cells were simulated around each nucleus based 

on the presence of a membrane. Algorithm IHC thresholds were then 

established to classify each cell based on its membrane, cytoplasmic, or 

nuclear stain intensity as negative, low, medium, or high. Once 

completed, the algorithm was applied objectively to each core. Data 

generated included the number of negative, low, medium, or high 

classified cells in each core. The histologic score (H-score) for each core 

was calculated as follows: 

H-Score = (1 x % Cells Low) + (2 x % Cells Medium) + (3 x % Cells 

High) 

 

The H-score is a combined parameter that corresponds to the percent 

positivity and intensity of expression within areas of tumor and has a 

range of 0-300. For p16 staining, positive expression was defined as 

diffuse 3+ staining (all 3+ cases demonstrated diffuse staining) or 2+ 

staining in 50% or more of tumor cells. 

 

IV Statistics 

 

H-scores were stratified by high and low expression using cut-points 

determined with ROC analysis. Biomarker expression levels measured 

using the H-score generally showed a normal distribution and were 

correlated with one another using the Pearson rank correlation. 

Biomarker expression levels were correlated with p16 status using 

Spearman's rank correlation. Effects of biomarker and p16 status on 

locoregional failure (LRF), disease-free survival (DFS), and overall 

survival (OS) were analyzed using Kaplan Meier and Cox proportional 

hazard modeling for uni- and multivariable analyses (UVA, MVA), 

respectively. 

 

Results 

 

I Baseline Patient Characteristics 

 

The baseline characteristics of the patients are shown in (Table 1). Of 

the 109 patients included in this analysis, the majority had oropharynx 

primaries (62%), while larynx (28%), hypopharynx (6%) and oral cavity 

(4%) were also represented. The majority were clinical stage IVA (64%), 

according to AJCC version 7 staging. The median follow-up was 6.19 

years, with a maximum of 13.46 years. 

 

II Biomarker Analysis 

 

Biomarker expression levels were correlated with one another and with 

p16 status. Using the H-score as a continuous variable, there was a 

significant negative correlation between CD44 expression and p16 status 

and a significant positive correlation between CD44 and both MTOR 

and GLUT1, c-MET and MTOR, and MTOR and GLUT1 (Table 2). 

When patients were stratified by p16 positive or negative status, the 

significant positive correlation between CD44 expression and MTOR 

remained for both the p16 positive and negative subsets, while 

correlations between CD44 and GLUT1 and c-MET and MTOR were 

seen in the p16-negative subset only. A significant correlation between 

MTOR and GLUT was seen overall and for the p16 positive subset. 

There were no significant correlations with EGFR. Figure 1 presents the 

IHC data as a heat map sorted by p16 status and CD44 expression, 

clearly showing the correlation between the two biomarkers.  

 

Figure 1 presents the IHC data as a hierarchical cluster analysis for all 

the biomarkers and as a loading plot from principal component analysis 

(PCA) for p16- and p16+ tumors. The clustering and color map indicates 

that there are discernible associations between the biomarkers without a 

strong phenotype that emerges encompassing several biomarkers. The 

loading plot clearly highlights the different contributions of these 

biomarkers in p16- and p16+ patients. 
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Figure 1: Hierarchical clustering of A) protein expression values for all patients and B) loading plot from PCA analysis of p16- and p16+. 

 

When correlations were assessed by disease site (oropharynx, larynx, or 

other), a significant correlation between CD44 and MTOR remained for 

both oropharynx and larynx; the correlations between CD44 and GLUT1 

remained for oropharynx primaries only; the correlations between c-

MET and MTOR and MTOR and GLUT remained for other primary 

sites only. There were significant correlations between EGFR and 

MTOR for oropharynx primaries and between c-MET and GLUT1 for 

other primary sites (Supplementary Table 1). 

 

Table 2: Correlation analysis between the biomarkers. Data are presented for all tumors and stratified by p16 status. Numbers in bold represent significant 

correlations. 

 p16 CD44 C-MET EGFR MTOR 

CD44 

all 

p16+ 

p16- 

 

0.28  (p=0.004) 

    

C-MET 

all 

p16+ 

p16- 

 

-0.08 (p=0.37) 

 

0.05 (p=0.61) 

0.10 (p=0.49) 

0.00 (p=0.997) 

   

EGFR 

all 

p16+ 

p16- 

 

-0.17 (p=0.08) 

 

0.02 (p=0.85) 

-0.20 (p=0.15) 

0.11 (p=0.43) 

 

-0.03 (p=0.79) 

-0.02 (p=0.88) 

-0.044 (p=0.75) 

  

MTOR 

all 

p16+ 

p16- 

 

-0.12 (p=0.22) 

 

0.37 (p<0.001) 

0.32 (p=0.02) 

0.39 (p=0.004) 

 

0.24 (p=0.01) 

0.16 (p=0.28) 

0.03 (p=0.03) 

 

-0.11 (p=0.23) 

-0.24 (p=0.08) 

-0.05 (p=0.74) 

 

GLUT1 

all 

p16+ 

p16- 

 

-0.12 (p=0.23) 

 

0.33 (p=0.001) 

0.17 (p=0.21) 

0.41 (p=0.005) 

 

0.05 (p=0.62) 

0.08 (p=0.55) 

0.01 (p=0.95) 

 

0.09 (p=0.36) 

-0.04 (p=0.77) 

0.16 (p=0.28) 

 

0.30 (p=0.002) 

0.30 (p=0.03) 

0.28 (p=0.0.063) 

 

III Biomarkers and Clinical Outcomes 

 

To examine the effects of biomarker status on clinical outcomes, ROC 

analysis was performed to stratify H-scores by high and low expression. 

Representative images of IHC staining for CD44, with corresponding H-

scores stratified by the cut-point of 163, are shown in (Figure 2). The 

cut-off values for each biomarker as determined by ROC analysis 

comprised of an H-score greater than or equal to 163 for CD44, greater 
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than or equal to 187 for c-MET, greater than or equal to 86 for mTOR, 

greater than or equal to 32 for EGFR, and greater than or equal to 202 

for GLUT1. Fifty-one percent of the patients were p16 positive. The 

ROC cut-off values do not necessarily signify high or low expression, as 

was the case in our previous publications; it is the optimal value for 

statistical significance with regard to overall survival.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Examples of cores stained for CD44 displaying different staining characteristics. The numbers below each represent the H-score using definiens 

tissue studio analysis. 

 

Table 3: Univariate analysis of selected clinicopathological features and biomarkers. Significant parameters are highlighted in bold. 

 

LRC DFS OS 

HR (95% CI) p-value HR (95% CI) p-value HR (95% CI) p-value 

Age        

<50 vs 50-59 

<50 vs 60-69 

<50 vs 70+ 

 

1.0 (0.37-2.7) 

0.48 (0.15-1.5) 

1.0 (0.35-2.9) 

 

0.995 

0.199 

0.981 

 

1.1 (0.47-2.3) 

0.68 (0.30-1.6) 

1.8 (0.84-4.0) 

 

0.910 

0.372 

0.131 

 

0.94 (0.4-2.3) 

0.64 (0.26-1.6) 

2.53 (1.1-5.8) 

 

0.893 

0.331 

0.027 

T stage (cT1-2 vs cT3-4) 1.9 (0.95-3.9) 0.068 1.8 (1.1-3.0) 0.022 2.3  (1.4-4.0) 0.002 

N stage (cN0-2a vs cN2b-cN3) 1.1 (0.55-2.3) 0.741 1.3 (0.76-2.1) 0.368 1.3 (0.74-2.2) 0.383 

Primary other vs oropharynx 0.39 (0.19-0.80) 0.010 0.34 (0.21-0.56) <0.001 0.31 (0.18-0.53) <0.001 

p16  Negative vs Positive 0.19 (0.08-0.45) <0.001 0.22 (0.13-0.38) <0.001 0.19 (0.10-0.36) <0.001 

CD44  <163 => 163 4.0 (2.0-8.1) <0.001 3.0 (1.7-5.0) <0.001 3.0 (1.7-5.3) <0.001 

c-MET <187 => 187 2.8 (1.3-5.6) 0.006 1.8 (1.1-3.0) 0.020 2.2 (1.3-3.7) 0.005 

MTOR < 86 => 86 1.5 (0.7-3.2) 0.292 1.6 (0.9-2.8) 0.085 1.6 (0.9-2.9) 0.121 

EGFR < 32 => 32 2.1 (0.9-4.6) 0.079 2.0 (1.2-3.6) 0.013 2.2 (1.2-4.0) 0.014 

GLUT1 <187 => 187 2.29 (1.1-5.0) 0.038 2.41 (1.4-4.2) 0.002 2.82 (1.6-5.0) <0.001 

GLUT1 unknown 3.03 (1.1-8.4) 0.033 2.55 (1.2-5.6) 0.019 3.17 (1.4-74) 0.007 

 

To identity the prognostic impact of baseline patient and biomarker 

expression on clinical outcomes, univariate analysis was performed 

(Table 3). Age less than 50 predicted for superior OS (HR: 2.53, 95% 

CI: 1.1-5.8, p = 0.027) compared to age 70 and above. Clinical T stage 

1-2 predicted for better DFS (HR: 1.8, 95% CI: 1.1-3.0, p = 0.022) and 

OS (HR: 2.3, 95% CI: 1.4-4.0, p = 0.002) compared to clinical stage T3-

4 tumors. Non-oropharynx primary tumor predicted for worse LRC, 

DFS, and OS (HR: 0.39, 95% CI: 0.19-0.80, p = 0.010; HR: 0.34, 95% 
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CI: 0.21-0.56, p < 0.0001; and HR: 0.31, 95% CI: 0.18-0.53, p < 0.0001) 

compared to oropharynx primaries. As expected, p16-negative status 

predicted for worse LRC, DFS, and OS (HR: 0.19, 95% CI: 0.08-0.45, p 

< 0.0001; HR: 0.22, 95% CI: 0.13-0.38, p < 0.0001; and HR: 0.19, 95% 

CI: 0.10-0.36, p < 0.0001) compared to p16-positive status.  

 

The prognostic impact of each biomarker expression levels on clinical 

outcomes are also presented in (Table 3). On univariate analysis, higher 

CD44 expression predicted for worse LRC (HR: 4.0, 95% CI: 2.0-8.1, p 

< 0.001), DFS (HR: 3.0, 95% CI: 1.7-5.0, p < 0.0001), and OS (HR: 3.0, 

95% CI: 1.7-5.3, p < 0.0001). Higher c-MET expression also predicted 

for worse LRC (HR: 2.8, 95% CI: 1.3-5.6, p = 0.006), DFS (HR: 1.8, 

95% CI: 1.1.3.0, p = 0.020), and OS (HR: 2.2, 95% CI: 1.3-3.7, p = 

0.005). Higher EGFR expression was also predictive for worse DFS 

(HR: 2.0, 95% CI: 1.2-3.6, p = 0.013) and OS (HR: 2.2, 95% CI: 1.2-

4.0, p = 0.014), but not LRC, and similarly, higher GLUT1 expression 

predicted for poorer LRC (HR: 2.3, 95% CI: 1.1-5.0, p = 0.038), DFS 

(HR: 2.4, 95% CI: 14-4.2, p = 0.002), and OS (HR: 2.8 95% CI: 1.6-5.0, 

p < 0.0001).  

 

Due to the fact that p16 positive HNSCC is known to have a more 

favorable clinical course and response to treatment as compared to p16 

negative tumors, we also assessed the influence of biomarker expression 

levels on our clinical endpoints as a function of p16 status (Figure 3) 

[12]. With the exception of CD44, which was significantly predictive for 

LRC and DFS in the p16 negative subset and for OS in the p16 positive 

subset, and GLUT1, which was significantly predictive for OS in the p16 

positive subset, the majority of biomarkers were no longer significantly 

predictive for LRC, DFS, or OS. This is possibly explained by the 

reduced number of patients in the p16 positive and negative subsets.  

 

On multivariable analysis, p16 remained independently associated with 

improved LRC, DFS, and OS (HRs 0.25, 95% CI 0.1-0.7; 0.25, 95% CI 

0.1-0.5; 0.25, 95% CI 0.1-0.5). Higher CD44 also remained 

independently associated with inferior LRC, DFS, and OS (HRs 2.8, 

95% CI 1.2-6.7; 1.9, 95% CI 1.0-3.5; 2.2, 95% CI 1.1-4.2), while higher 

EGFR was independently associated with inferior DFS and OS (HRs 

1.95, 95% CI 1.1-3.6; 2.2, 95% CI 1.1-4.3) and c-MET with OS (HR 

1.91, 95% CI 1.0-3.6). Meanwhile, GLUT1 was not independently 

associated with any clinical outcome (Table 4). If MVA was adjusted for 

T stage and p16 status, CD44 expression (p = 0.015) and high EGFR 

expression (p = 0.049) predicted for significantly worse DFS, while high 

c-MET expression (p = 0.294) and high GLUT1 expression (p = 0.667) 

did not (data not shown). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Hazard ratio analysis for all tumors and as a function of A) p16 status for overall survival, B) disease-free survival and C) locoregional control. 
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Table 4: Multivariate analysis of LRC, DFS and OS. Significant parameters are highlighted in bold. 

 LRC DFS OS 

Variable HR (95% CI) p-value HR (95% CI) p-value HR (95% CI) p-value 

Age <50 vs 50-59 0.68 (0.23, 1.99) 0.48 0.61 (0.25, 1.49) 0.28 0.57 (0.22, 1.48) 0.25 

Age <50 vs 60-69 0.60 (0.18, 2.01) 0.41 0.56 (0.23, 1.36) 0.20 0.64 (0.24, 1.69) 0.37 

Age <50 vs 70 0.67 (0.22, 2.02) 0.47 1.00 (0.44, 2.28) >0.99 1.68 (0.70, 3.99) 0.24 

Clinical T Stage cT1-2 vs cT3-4 1.36 (0.64, 2.88) 0.42 1.21 (0.71, 2.07) 0.48 1.70 (0.95, 3.04) 0.072 

p16 Status negative vs positive 0.25 (0.10, 0.68) 0.006 0.25 (0.13, 0.49) <0.001 0.25 (0.12, 0.52) <0.001 

CD44 Score <163  vs 163+ 2.78 (1.16, 6.65) 0.022 1.86 (1.00, 3.47) 0.050 2.15 (1.11, 4.15) 0.023 

c-MET Score <187 vs  187+ 2.10 (0.91, 4.84) 0.082 1.41 (0.78, 2.53) 0.26 1.91 (1.02, 3.57) 0.044 

MTOR Score <86 vs 86+ 1.37 (0.55, 3.44) 0.50 1.54 (0.80, 2.97) 0.20 1.25 (0.61, 2.57) 0.54 

EGFR Score <32 vs 32+ 2.07 (0.83, 5.14) 0.12 1.95 (1.05, 3.60) 0.034 2.19 (1.12, 4.28) 0.022 

GLUT1 Score <187 vs 202+ 0.51 (0.18, 1.45) 0.21 0.56 (0.26, 1.19) 0.13 0.61 (0.28, 1.30) 0.20 

GLUT1 <187 vs unknown 0.78 (0.21, 2.87) 0.70 0.89 (0.35, 2.27) 0.81 1.22 (0.46, 3.22) 0.69 

 

Discussion 

 

In this study, we have developed a quantitative image analysis approach 

to analyze known biomarkers in HNSCC that allowed us to more 

accurately study their correlation with one another and investigate their 

association with clinical outcomes in p16+ and p16- HNSCCs. We had 

previously analyzed these biomarkers using visual analysis carried out 

by two or three independent observers [9-11, 13]. The results of this 

present analysis generally correspond with our previous findings, 

although differences did arise. The differences were attributed to the 

different methods in scoring and in determining the cut-points for 

analysis. Using visual scoring methods, the data was generally classified 

as high or low expression based on semi-quantitative scoring and 

grouping of these scores. The grouping of scores varied depending on 

the marker, i.e., in some cases it was 1 and 2 versus 3 whilst in others it 

0 and 1 versus 2 and 3. The grouping then determined the distribution of 

data for correlation analysis (using a Chi-squared analysis for ordinal 

data) and for analysis of clinical outcome parameters. The methodology 

in this study allowed a more robust correlation between biomarker 

expression as the values basically became a continuous variable.  

 

An important point to note is that the use of the terms high or low 

expression in this current study is not relevant. The cut-offs were 

determined statistically, providing the optimal segregation of the data 

with reference to overall survival. In some cases, the cut-off was close 

to the median value (e.g., CMET 187 by ROC versus a median of 170), 

while in other cases it was not (e.g., CD44 163 by ROC versus a median 

of 103). Supplementary Table 2 presents the clinical outcome data using 

the median value for each biomarker and highlights the dependence of 

clinical significance on the choice of cut-off. However, using the more 

rigorous cut-offs for the biomarkers based on ROC analysis rather than 

a semi-quantitative classification, we were able to confirm the 

prognostic significance of high expression levels of CD44 and CMET 

for worse LRC, DFS and OS, as well as high EGFR or GLUT1 

expression predicting for worse DFS and OS but not LRC.  

 

The correlation between the biomarkers and p16 status yielded new data. 

As p16 serves as a surrogate for HPV status, this added to knowledge 

concerning the difference between HPV-driven tumors compared to 

HPV negative tumors. These two HNSCC subtypes have distinct 

etiologies, molecular properties, clinical features, and prognostic 

outcomes [14-16]. Differences in the molecular landscapes of HPV-

driven and HPV-negative HNSCC occur genome-wide and encompass 

changes in genomic, epigenetic, and transcriptional landscapes [17, 18]. 

The mutational load and spectrum differ between these two subtypes, 

with HPV+ cancers characterized by a lower mutational burden, with the 

most common mutations in PIK3CA, IGFR1, EPHA2, DDR2, KEAP1, 

NOTCH1, FGFR2, and FGFR3 [19, 20]. Mutations TP53, FADD, 

CCDN1, CDKN2A, FAT1, NOTCH1, MYC, and PIK3CA dominate in 

HPV- tumors [19, 20]. Interestingly, there was no difference in 

expression levels of MTOR, CMET or EGFR between p16+ and p16- 

tumors.  

 

However, mean CD44 expression was significantly higher (p = 0.004) in 

p16- tumors (median 116; interquartile range (IQR) 63, 170) compared 

to p16+ tumors (median 75; IQR 35, 124). Also, GLUT1 (which serves 

as a hypoxia marker), was significantly (p < 0.001) higher in p16- tumors 

(median 156; IQR 72, 192) versus p16+ tumors (median 98; IQR 63, 

159). High expression of both of these biomarkers (CD44 and GLUT1) 

was associated with poorer overall survival in all patients and also 

retained significance in the p16+ group (Figure 2) [21]. In addition, there 

was a significant correlation between CD44 and GLUT1 (Table 2); a 

previous study had noted a strong correlation between CD44 and 

hypoxia gene signatures in HPV- HNSCC [22].  

 

CD44 was also strongly correlated with MTOR (Table 2), and this 

correlation was significant irrespective of p16 status. The link between 

CD44 and MTOR has been reported in several recent studies in the 

context of cancer stem cells (CSCs) [23-28]. Rapamycin inhibition of 

the MTOR signaling pathway downregulated cancer stem cell properties 

of nasopharyngeal carcinoma, and anti-CD44 antibodies inhibit both 

mTORC1 and mTORC2 in acute myeloid leukemia [23, 24]. A 

molecular link was discovered between the PI3K/AKT/MTOR signaling 

pathway and CSCs, characterized by high CD44 and aldehyde 

dehydrogenase (ALDH) activity, in patient-derived xenografts from 

patients with both HPV positive and negative HNSCC [29]. 

 

Given the evidence that CD44 is consistently associated with a poor 

prognosis in HNSCC and its established role in treatment-resistant 

cancer stem cells in HNSCC, it is somewhat surprising that therapeutic 

strategies targeting this molecule are lacking in solid tumors [30-37]. 
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However, several novel strategies using nanoparticles and targeting 

miRNAs are being developed [38-41].  

 

Multiple methods for automated quantification of biomarker expression 

within TMAs have been established, with the common objective to 

reduce the time-consuming nature and potential biases of semi-

quantification by visual inspection. While some have been developed for 

general quantification, others have been created for more specific 

purposes, such as measuring changes in the subcellular location of 

biomarkers, where the ability to eliminate the bias inherent to visual 

inspection may be of particular importance [3-5]. While automated 

quantification has been used previously to correlate biomarker 

expression levels with clinical prognostic factors in human tumor 

specimens, to our knowledge, this is the first study that used automated 

analysis to interrogate the potential prognostic significance of 

biomarkers using a TMA and biomarkers which had previously been 

shown to have significant prognostic value using semi-quantitative 

visual inspection [42]. Specifically, we used Definiens Tissue Studio, 

which uses feature-based or contextual compartmentalization to train the 

software to recognize areas of interest for analysis and which is one of 

several commercially available image analysis software with the 

potential to allow high-throughput analysis in IHC [6].  

 

In conclusion, we performed automated quantification of CD44, c-MET, 

MTOR, EGFR, and GLUT1 expression in HNSCC samples from 

patients who underwent definitive chemoradiation. Our analysis shows 

that higher expression of CD44, c-MET, EGFR, and GLUT1 were 

associated with inferior DFS and OS, while MTOR expression levels did 

not correlate with any clinical endpoints. The trend for OS and DFS 

remained significant for CD44 and EGFR but not for c-MET or GLUT1 

on MVA. This confirms findings reported in our previously published 

studies using this same TMA and highlights the importance of CD44 

expression in both p16 positive and negative subtypes of HNSCC. 
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Supplementary Table 1: Correlation analysis between the biomarkers for each disease sub-site: oropharynx (n=68), larynx (n=30), and all other disease 

sites (n=11, oral cavity and hypo pharynx combined). Numbers in bold represent significant correlations. Correlation by p16 status could not be performed 

for the other sub-site category as all samples in this group were p16 negative. 

Oropharynx p16 CD44 C.MET EGFR mTOR 

CD44   -0.200 (p=0.102) —    

C.MET  -0.008 (p=0.946) -0.049 (p=0.690) —   

EGFR   -0.093 (p=0.449) -0.160 (p=0.193) -0.184 (p=0.133) —  

mTOR   0.009 (p=0.944) 0.350 (p=0.003) 0.161 (p=0.191) -0.242 (p=0.047) — 

GLUT1  0.101 (p=0.414) 0.321 (p=0.008) -0.211 (p=0.083) 0.095 (p=0.442) 0.205 (p=0.093) 

Larynx p16 CD44 C.MET EGFR mTOR 

CD44   -0.054 (p=0.775) —    

C.MET  0.008 (p=0.965) 0.156 (p=0.410) —   

EGFR   -0.025 (p=0.896) 0.088 (p=0.643) 0.017 (p=0.931) —  

mTOR   -0.154 (p=0.415) 0.471 (p=0.009) 0.169 (p=0.373) 0.012 (p=0.951) — 

GLUT1  -0.138 (p=0.467) 0.109 (p=0.566) 0.101 (p=0.596) 0.163 (p=0.388) 0.310 (p=0.095) 
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Other p16 CD44 C.MET EGFR mTOR 

CD44   n/a —    

C.MET  n/a -0.165 (p=0.627) —   

EGFR   n/a 0.159 (p=0.640) 0.197 (p=0.562) —  

mTOR   n/a 0.178 (p=0.600) 0.787 (p=0.004) 0.176 (p=0.604) — 

GLUT1  n/a -0.332 (p=0.319) 0.8718 (p=0.0005) 0.233 (p=0.490) 0.771 (p=0.005) 

 

Supplementary Table 2: Univariate analysis of clinical outcome parameters using the median value for each biomarker. 

 LRF DFS OS 

 HR (95% CI) p-value HR (95% CI) p-value HR (95% CI) p-value 

p16 0.21 (0.08 - 0.52) 0.001 0.14 (0.06 - 0.32) <0.001 0.14 (0.06 - 0.33) <0.001 

CD44 0.57 (0.24 - 1.31) 0.2 0.53 (0.24 - 1.13) 0.10 0.53 (0.25 - 1.14) 0.11 

c-MET 0.45 (0.19 - 1.04) 0.064 0.88 (0.41 - 1.88) 0.8 0.67 (0.31 - 1.42) 0.3 

mTOR 1.03 (0.45 - 2.35) >0.9 0.77 (0.36 - 1.65) 0.5 0.77 (0.36 - 1.64) 0.5 

EGFR 1.23 (0.54 - 2.82) 0.6 0.57 (0.27 - 1.22) 0.2 0.49 (0.23 - 1.05) 0.069 

GLUT1 1.23 (0.54 - 2.82) 0.6 0.57 (0.27 - 1.22) 0.2 0.57 (0.27 - 1.22) 0.2 
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