The Supraclavicular Skin Temperature Response to Mild Cold Stimulation is Dependent on Ambient Temperature
The Supraclavicular Skin Temperature Response to Mild Cold Stimulation is Dependent on Ambient Temperature
Download Citation in txt
Download Citation in bib
Download Citation in ris
Author Info
Helen Budge I A Macdonald Lindsay Jane Robinson Michael E. Symonds
Corresponding Author
Michael E. SymondsDivision of Child Health, Obstetrics and Gynaecology
A B S T R A C T
Purpose: This study investigated the basal activity, and cold-induced thermogenic response, of supraclavicular brown adipose tissue (BAT) under warm (23˚C) and cool (18˚C) ambient conditions using supraclavicular skin temperature as a measure of BAT activity. As a highly metabolic, heat-producing tissue, it has been hypothesised that under-active/dysfunctional BAT may underlie a pathological energy imbalance leading to obesity. Methods: Five lean, healthy participants underwent infrared thermography (IRT) of supraclavicular BAT before, and during, mild cold exposure (single-hand immersion in cool water at 20˚C), once at 18˚C and once at 23˚C. Energy expenditure (EE) was measured simultaneously using indirect calorimetry, and mean skin temperature (TMSK) was calculated at 1-minute intervals in parallel to IRT using wireless data loggers. Results: Following 30 minutes of hand cooling, supraclavicular skin temperature (TSCR) rose significantly from baseline at an ambient temperature of 23˚C (∆TSCR: 0.17 ± 0.03˚C, P < 0.01), and EE rose by 0.22 ± 0.02 kJ/min, P < 0.001. At an ambient room temperature of 18˚C, TSCR after hand cooling was similar to baseline, and EE remained unchanged. The TMSK response was indicative of a systemic vasoconstrictive response of similar magnitude in both warm and cool ambient temperatures. Conclusions: At 18˚C in light clothing, BAT may already be maximally stimulated at baseline, and respond minimally to additional cold exposure. Ambient temperature is recognised as a determinant of glucose uptake in BAT. In this study, we show, that it also modulates the TSCR response to further localised coldstimulation, indicating an effect on BAT thermogenesis.
Article Info
Article Type
Research ArticlePublication history
Received: Wed 17, Jul 2019Accepted: Mon 19, Aug 2019
Published: Fri 30, Aug 2019
Copyright
© 2023 Michael E. Symonds. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Hosting by Science Repository.DOI: 10.31487/j.JDMC.2019.01.02